A Comparison of Logistic Regression to Random Forests For
نویسندگان
چکیده
منابع مشابه
Comparison of Random Forest and Logistic Regression Methods in Predicting Mortality in Colorectal Cancer Patients and its Related Factors
Background and Objectives: The purpose of this study was to predict the mortality rate of colorectal cancer in Iranian patients and determine the effective factors on the mortality of patients with colorectal cancer using random forest and logistic regression methods. Methods: Data from 304 patients with colorectal cancer registry from the Gastroenterology and Liver Research Center of Shah...
متن کاملComparison of Random Survival Forests for Competing Risks and Regression Models in Determining Mortality Risk Factors in Breast Cancer Patients in Mahdieh Center, Hamedan, Iran
Introduction: Breast cancer is one of the most common cancers among women worldwide. Patients with cancer may die due to disease progression or other types of events. These different event types are called competing risks. This study aimed to determine the factors affecting the survival of patients with breast cancer using three different approaches: cause-specific hazards regression, subdistri...
متن کاملAn Empirical Comparison of Supervised Learning Algorithms Using Different Performance Metrics
We present results from a large-scale empirical comparison between ten learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps. We evaluate the methods on binary classification problems using nine performance criteria: accuracy, squared error, cross-entropy, ROC Area, F-score, p...
متن کاملModeling Anthropogenic Fire Occurrence in the Boreal Forest of China Using Logistic Regression and Random Forests
Frequent and intense anthropogenic fires present meaningful challenges to forest management in the boreal forest of China. Understanding the underlying drivers of human-caused fire occurrence is crucial for making effective and scientifically-based forest fire management plans. In this study, we applied logistic regression (LR) and Random Forests (RF) to identify important biophysical and anthr...
متن کاملModeling the Degradation of Hyrcanian Forests Using Logestic Regression Method (Case Study: Shenrood Forests, Guilan)
Having accurate quantitative and qualitative information about the state of forest stands, is necessary for any basic management and planning, to reduce the effects of forest degradation. The current study aimed to model the destruction of Hyrcanian forests under the effects of density and volume (per hectare) variables, using logistic regression. In total, 252 plots of 1000 m2 area were measur...
متن کامل